
Evelyn Moore s4104592 2025
Harnessing Compute Shaders for the Real-Time
Simulation of Physically Accurate, High-Energy

Fluid Dynamics

Introduction:
The purpose of this investigation is to understand and analyse the suitabilty of differing
Computational Fluid Dynamics (CFD) methods for different use cases and their real-time
performance when implemented using compute shaders in Unity. CFD is concerned with replacing
the Navier-Stokes equations, which govern fluid flow but often lack analytical solutions, with
numbers which when advanced in space and/or time describe the movement of a flow field
(Anderson et al. 2013). There are two methods for fluid simulation covered here, a particle-based
(Lagrangian) approach, and a grid-based (Eulerian) approach (Wang et al., 2024).

Performance:

Eulerian Implementation:

Lagrangian Implementation:

Conclusion:
In conclusion, Lagrangian implementations are more suited to more technical games where
fluids are a core focus, as for most applications the risk of fluid blow-up is significant
unless the time step is made very small, in which case the simulation becomes intensive
even when calculated on the GPU. Eulerian implementations are well suited for large
bodies of water, such as waves crashing against a rocky shore, or small visual effects such
as smoke or steam, due to its relatively inexpensive performance. This is evidenced by the
success of game engine plugins such as FluXY (Virtual Method, 2021), which use a 2D
eulerian method to enable users to create effects such as oil spills, pressure waves in
water, and fire.

The Lagrangian implementation performs as expected, efficiently leveraging the GPU to
enable many millions of calculations per second. On average, it calculates one timestep in
7.4ms, which is enough to obtain framerates of greater than 120 fps. However, much
lower dips are seen than with the Eulerian implementation (Lagrangian has 0.1% lows of
35 fps compared to Eulerian’s 64 fps). This is particularly noticable while using the
Lagrangian method because short dips to low framerates can cause fluid blow-up.

During testing, the Eulerian implementation appeared to use more of the CPU, and also
had markedly higher memory usage. This indicates that not enough of the workload is
being offloaded onto the GPU or perhaps the work being done on the GPU is not being
executed efficiently. At the moment, only the diffusion calculations are performed on the
GPU, and although these make up the majority of the calculations in most cases, clearly
values such as grid point velocities could also be implemented as compute shaders to
further increase performance. This is likely why the expected result of the Eulerian
simulation being more efficient than the Lagrangian method was not obtained.

References:

Stability:

Lagrangian implementations include thousands of individual particles, each with values such
as velocity, pressure, and density. Each particle interacts with those around it and influences
these values according to a smoothing function, typically a Gaussian kernel (Wang et al. 2024).
It is difficult to enforce compressability in a Lagrangian implementation (Huang, 2024), but
this is typically not as important in applications such as video games, where accuracy is less
important than performance. The Lagrangian simulation implemented appears visually striking
and realistic, and with an added viscosity value could simulate many types of liquid effectively.

Eulerian implementations efficiently approximate solutions to the Navier-Stokes equations
(Horváth, 2012). They typically model the fluid field as a grid of static points, each of
which stores the velocity, density and pressure of the fluid at that point. The values of
the fluid at points in between grid positions can be calculated simply by interpolating
between the values at grid points, although this requires a fairly high density grid to not
lose detail.

The Eulerian implementation effectively models fluid flow over the surface of a large body
of water and the inclusion of diffusion makes it suitable for the modelling of
compressible fluids such as smoke, flames, and steam, although additional kernels would
need to be added to the compute shader to calculate vortices.

Lagrangian is prone to liquid explosions and instability at high gravity or high timescales.
It is particularly vulnerable when the computer is under load from other processes, and a
single moment of reduced framerate can cause instability within the simulation.

Eulerian is prone to energy decay over time or loss/gain of density and velocity over long
time periods or many interactions, partly due to floating point inaccuracies. This was seen
in the simulation implemented, where very slight changes to the density decay rate would
cause the bounds to completely fill with fluid or completely empty over the course of a few
minutes.

Values are an average recorded over 3 minutes of constant
interaction with the simulation.

Areas of high density diffuse out to fill the fluid grid over time.

The flow of water throughout the grid is effectively modelled.

Wang, F., Sun, Z., & Hu, X. (2024)
An efficient truncation scheme for
Eulerian and total Lagrangian SPH

methods. arXiv. Accessed at
https://arxiv.org/pdf/2405.05155 on

22/05/2025

Horváth, Z. (2012) Real-Time
Particle Simulation of Fluids.

Accessed at
https://www.researchgate.net/public

ation/266223633_Real-
time_particle_simulation_of_fluids

on 27/04/2025

Huang, Y. (2024) Variational
Interference via Smoothed Particle
Hydrodynamics. arXiv. Accessed at
https://arxiv.org/pdf/2407.09186 on

20/05/2025

Anderson, J.D., Degrez, G., Dick, E., &
Grundmann, R. (2013) p.6

Computational Fluid Dynamics, An
Introduction. Accessed at

https://books.google.co.uk/books/about/
Computational_Fluid_Dynamics.html?
id=PM3yCAAAQBAJ&redir_esc=y on

25/05/2025

Virtual Method (2021) FluXY. Accessed
at

https://assetstore.unity.com/packages/t
ools/physics/fluxy-2-5d-fluid-

simulator-203795 on 26/05/2025


